欧冠比赛分析竞彩官方入口|中国有限公司

欧冠比赛分析竞彩官方入口|中国有限公司成立于2000年11月1日,是中国航天科工集团有限公司控股、以信息安全为核心的国有科技型上市公司。2003年7月11日,欧冠比赛分析竞彩官方入口|中国有限公司在A股主板市场挂牌上市(SHA:600271),是中国信息技术行业最具影响力的上市公司之一,欧冠比赛分析竞彩官方入口|中国有限公司是“全国文明单位”、国务院国资委标杆“科改示范企业”。先后在全国建立多个汽车后市场运营服务平台——位于浙江杭州的“浙江金恒德国际汽车物流中心”、位于四川成都的“四川金恒德国际汽车商贸物流城”、位于浙江绍兴的“绍兴金恒德汽车广场”、位于浙江天台的“天台?中国汽车用品城”。这些汽车后市场项目紧跟“互联网+”时代发展趋势,不断迭代升级,以汽车百货商城、云市场、创新创业孵化园、汽车一体化生态平台、汽车用品价格指数等创新业态,引领、推动了中国汽车后市场行业的创新发展。为全球电信运营商、政企客户和消费者提供创新的技术与产品解决方案。公司成立于1985年,在香港和深圳两地上市,业务覆盖160多个国家和地区,服务全球1/4以上人口,致力于实现“让沟通与信任无处不在”的美好未来。坚持以持续技术创新为客户不断创造价值,在全国设立了11家研发机构,同时进一步强化自主创新力度,保持在5G无线、核心网、承载、接入、芯片等核心领域的研发投入,研发投入连续多年保持在营业收入10%以上。截至2021年底,拥有全球专利申请量8.4余万件,已授权专利超过4.2万件,累计获得中国专利奖10项金奖。同时,是全球5G技术研究和标准制定的主要参与者和贡献者。

欧冠比赛分析竞彩官方入口|中国有限公司

欧冠比赛分析竞彩官方入口|中国有限公司-用GFlowNets统一生成模型,Bengio等人数页论文给讲通了

机器之心报道

编辑:小舟、陈萍

Yoshua Bengio 指出的未来方向 GFlowNets 与现有的生成模型有什么关系?

生成流网络(GFlowNets)是图灵奖得主 Yoshua Bengio 对 AI 领域未来方向提出的想法。GFlowNets 基于强化学习、深度生成模型和概率建模,涉及变分模型及推断,为非参数贝叶斯建模、生成式主动学习以及抽象表征的无监督或自监督学习打开了新的大门。去年,Bengio 以一作的身份发表了长达 70 页的论文《GFlowNet Foundations》。

GFlowNets 灵感来源于信息在时序差分 RL 方法中的传播方式(Sutton 和 Barto,2018 年)。两者都依赖于 credit assignment 一致性原则,它们只有在训练收敛时才能实现渐近。由于状态空间中的路径数量呈指数级增长,因此实现梯度的精确计算比较困难,因此,这两种方法都依赖于不同组件之间的局部一致性和一个训练目标,即如果所有学习的组件相互之间都是局部一致性的,那么我们就得到了一个系统,该系统可以进行全局估计。

现在,Bengio 及其学生张鼎怀等发表了一篇新论文《Unifying Generative Models with GFlowNets》,简要介绍了现有深度生成模型与 GFlowNet 框架之间的联系,阐明了它们的重叠特征,并通过马尔可夫轨迹学习的视角提供了一个统一的观点,并进一步提供了一种统一训练和推理算法的方法。

论文地址:https://arxiv.org/abs/2209.02606

论文主要内容分成 6 个部分:

第一部分是 GFlowNets 的基本介绍。

第二部分是 Hierarchical VAE (HVAE),这是一类重要的生成模型。本文基于分析发现:HVAE 和 GFlowNets 之间存在细微差别,基于此他们得出两个观察:一是在某种定义下,HVAE 是一种特殊的 GFlowNets;另一个是两者在训练方式上,存在一些相似性。

第三部分是扩散模型 & SDE( stochastic differential equatio ):扩散模型也是一类重要的生成模型,是受非平衡热力学的启发,其与 VAE 或流动模型不同,扩散模型是用固定的程序学习的;而 SDE 可以看做是生成模型当中的一项重要技术。本文发现:在某种意义上,SDE 是 GFlowNets 的一种特殊情况,本文将随机过程特性和 GFlowNets 特性之间进行类比。

第四部分是精确似然模型,这里介绍了自回归模型(AR 模型),这是最常见的平稳时间序列模型之一,本文发现 AR 模型可以被视为 GFlowNets,此外,本文还发现 NF(归一化流)也是一种特殊的 GFlowNets。

第五部分是从数据中学习奖励函数,本文认为基于能量的模型(EBM)可以用作 GFlowNets 训练的 (负对数) 奖励函数,可以使用任何 GFlowNets 建模,并将其与 EBM 一起训练。

第六部分为总结,该论文将现有的生成模型解释为在样本轨迹上具有不同策略的 GFlowNets。这提供了一些关于现有生成建模框架之间重叠的见解,以及它们与用于训练它们的通用算法的联系。此外,这种统一意味着一种构建不同类型生成建模方法聚合的方法,其中 GFlowNets 充当易于处理的推理和训练的通用粘合剂。

作者简介

这篇论文的一作是蒙特利尔学习算法研究所(Mila)的博士生张鼎怀,导师是 Bengio 和 Aaron Courville。他的研究兴趣包括因果推理、分布外泛化、贝叶斯推理、生成模型、强化学习和主动学习等。

第二作者陈天琦是多伦多大学博士,现在是 Meta AI 的研究科学家。2018 年,陈天琦等人的论文《Neural Ordinary Differential Equations》获得 NeurIPS 最佳论文奖,引起了极大关注。他的主要研究兴趣是概率深度学习。

第三作者 Nikolay Malkin 是 Mila 的博士后研究员,另一位作者是图灵奖得主 Yoshua Bengio。

感兴趣的读者可以阅读论文原文,了解更多研究内容和理论细节。

参考链接:https://zhuanlan.zhihu.com/p/499206074

更多精彩报道,尽在https://thefinlandia.com

Share this post

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注